人工智能關(guān)健技術(shù)深度學(xué)習(xí)是在云計算和大數(shù)據(jù)日趨成熟的背景下取得實質(zhì)性進(jìn)展,云計算為深度學(xué)習(xí)提供了平臺,大數(shù)據(jù)為深度學(xué)習(xí)提供了礦石,深度學(xué)習(xí)因此才得以在云平臺、在大數(shù)據(jù)中淘出黃金。
人工智能
事實上大數(shù)據(jù)在機器生物的進(jìn)化史上起到了舉足輕重的作用,不管是語音、圖像識別,語義計算,所有的都是在擁有足夠大數(shù)據(jù)的基礎(chǔ)上,互聯(lián)網(wǎng),移動互聯(lián)網(wǎng)帶來的大數(shù)據(jù)是人工智能研究進(jìn)了一大步的關(guān)健原因,另外深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)大大提高了語音和圖片系統(tǒng)的識別率,但同時對支撐大數(shù)據(jù)平臺的云計算也提出了更高的要求。很多人工智能專家提出,大數(shù)據(jù)和人工智能與云計算的發(fā)展不符。
從google的人工智能引擎TensorFlow開源說起,相比它facebook的Torch,微軟的DMTK,IBM的SystemML. 不能不說TensorFlow對異構(gòu)端的支持和強大靈活的算法 是眾多人工智能開源項目的獨有的,這也可能是其成功的關(guān)健。人工智能研究常常需要強大的就算機集群,機器學(xué)習(xí)需要訓(xùn)練各種算法,需要在數(shù)萬臺機器編寫深度學(xué)習(xí)軟件,構(gòu)建深度學(xué)習(xí)網(wǎng)絡(luò)。
TensorFlow可以用來編寫各式各樣的算法,包括深度神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練和干擾算法,并且它已經(jīng)被用于實驗研究中,也被部署在產(chǎn)品的機器學(xué)習(xí)系統(tǒng)中,已經(jīng)被應(yīng)用于十幾種計算機科學(xué)以及其他學(xué)科的領(lǐng)域中,包括語音識別、機器視覺、機器人學(xué)、信息檢索、自然語言處理地理信息提取以及計算機輔助藥物設(shè)計。
筆者認(rèn)為TensorFlow可以融合各種計算能力,又是有希望建立一套通用的深度學(xué)習(xí)模型的人工智能平臺,其開源項目給很多開發(fā)者帶來機會。科研部分需要用到GPU計算,研究成果實現(xiàn)商用時就更適合用CPU計算,GPU與CPU的融合計算是人工智能、生命科學(xué)研究對計算提出的新的要求。通常的理解CPU負(fù)責(zé)計算GPU負(fù)責(zé)圖處理,CPU的通用性更更好,但單個CPU性能成為整個系統(tǒng)運算能力的瓶頸,CPU+GPU是一個強大的組合,CPU包含幾個專為串行處理的優(yōu)化心,GPU則是專為并行處理而設(shè)計,由數(shù)千個更小,更節(jié)能的核心組成。
CPU運行程序中行部分,GPU運行并行部分。一個科研項目在研發(fā)階段往往對GPU運算用得比較多,商業(yè)階段后就CPU運算更多,不管是在研發(fā)過程還是商用階段 GPU+CPU都不是完全獨立,所以現(xiàn)在云服務(wù)提供商們應(yīng)需整合資源提供GPU+CPU 計算服務(wù)。寶德科技在高性能計算一直走在前列,早大與華在基因完成了第一張黃種人基因圖譜的繪制和大熊貓基因圖譜的繪制,最近又推出一全系列支持多GPU的高性能服務(wù)器結(jié)合寶德云公有云,私有云多種方式,寶德云計算為人工智能、生命科學(xué),高能物理等科研項目提供了全方位的計算服務(wù)。
Facebook 、Google、 微軟、IBM 先后開源的人工智能項目將會來給越來越多智能的服務(wù),高性能計算與云計算將交融參與其中。在計算的交融,大數(shù)據(jù)的交融,商業(yè)生態(tài)的交融將現(xiàn)將開啟生物智能和智能生物和諧共生的新場景。